Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 492
Filter
1.
Front Cell Infect Microbiol ; 14: 1378379, 2024.
Article in English | MEDLINE | ID: mdl-38606295

ABSTRACT

Introduction: Systematic evaluation of long-term outcomes in survivors of H1N1 is still lacking. This study aimed to characterize long-term outcomes of severe H1N1-induced pneumonia and acute respiratory distress syndrome (ARDS). Method: This was a single-center, prospective, cohort study. Survivors were followed up for four times after discharge from intensive care unit (ICU) by lung high-resolution computed tomography (HRCT), pulmonary function assessment, 6-minute walk test (6MWT), and SF-36 instrument. Result: A total of 60 survivors of H1N1-induced pneumonia and ARDS were followed up for four times. The carbon monoxide at single breath (DLCO) of predicted values and the 6MWT results didn't continue improving after 3 months. Health-related quality of life didn't change during the 12 months after ICU discharge. Reticulation or interlobular septal thickening on HRCT did not begin to improve significantly until the 12-month follow-up. The DLCO of predicted values showed negative correlation with the severity degree of primary disease and reticulation or interlobular septal thickening, and a positive correlation with physical functioning. The DLCO of predicted values and reticulation or interlobular septal thickening both correlated with the highest tidal volume during mechanical ventilation. Levels of fibrogenic cytokines had a positive correlation with reticulation or interlobular septal thickening. Conclusion: The improvements in pulmonary function and exercise capacity, imaging, and health-related quality of life had different time phase and impact on each other during 12 months of follow-up. Long-term outcomes of pulmonary fibrosis might be related to the lung injury and excessive lung fibroproliferation at the early stage during ICU admission.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Pneumonia , Respiratory Distress Syndrome , Humans , Prospective Studies , Cohort Studies , Influenza, Human/complications , Quality of Life , Respiratory Distress Syndrome/diagnostic imaging , Survivors
2.
Cancer ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38470375

ABSTRACT

BACKGROUND: Both venetoclax plus a hypomethylating agent (VEN/HMA) and cytarabine, aclarubicin, and granulocyte colony-stimulating factor (CAG) are low-intensity regimens for older patients with acute myeloid leukemia (AML) that show good efficacy and safety. It is unknown how VEN/HMA compares with the CAG regimen for the treatment of newly diagnosed AML. METHODS: The outcomes of patients with newly diagnosed AML treated with VEN/HMA were compared with those of patients treated with a CAG-based regimen. Propensity score matching between these two cohorts at a 1:1 ratio was performed according to age at diagnosis, sex, Eastern Cooperative Oncology Group performance status, state of fitness, and European LeukemiaNet (ELN) 2022 risk stratification to minimize bias. RESULTS: A total of 84 of 96 patients in the VEN/HMA cohort were matched with 84 of 147 patients in the CAG cohort. VEN/HMA resulted in a better response than the CAG-based regimens, as indicated by a higher composite complete remission (CRc) rate (82.1% vs. 60.7%; p = .002) and minimal residual disease negativity rate (88.2% vs. 68.2%; p = .009). In patients with an ELN adverse risk, VEN/HMA was associated with a higher CRc rate compared to CAG (80.5% vs. 58.3%; p = .006). VEN/HMA was associated with longer event-free survival (EFS) (median EFS, not reached vs. 4.5 months; p = .0004), whereas overall survival (OS) was comparable between the two cohorts (median OS, not reached vs. 18 months; p = .078). CONCLUSIONS: The VEN/HMA regimen may result in a better response than CAG-based treatment in older patients with newly diagnosed AML.

3.
BMC Pharmacol Toxicol ; 25(1): 26, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38504370

ABSTRACT

Browning of white adipose tissue (WAT) is become an appealing target for therapeutics in the treatment of obesity and related metabolic diseases. Dapagliflozin is widely used in the treatment of type 2 diabetes, and it is also found that the drug exhibits regulate systemic metabolism such as obesity, insulin resistance and hepatic steatosis. However, the precise role of dapagliflozin on WAT remodeling remains to be elucidated. The current study aimed to explore the role of dapagliflozin on WAT browning in high-fat diet (HFD)-induced obese mice. Male C57BL/6J mice (n = 6 per group) were used to establish obesity model by following feeding with HFD for 6 weeks. The mice were randomly treated with or without dapagliflozin for the experimental observation. The volume and fat fraction of WAT were quantified, H&E, UCP-1 staining and immunohistochemistry were conducted to investigate the white-to-brown fat conversion and angiogenesis in WAT respectively. Quantitative real-time polymerase chain reaction (qPCR) was employed to explore the mRNA expression levels of genes related to fat browning and angiogenesis in WAT. Subsequently, 3T3-L1 cells were used to explore the effect of dapagliflozin on preadipocytes differentiation in vitro. Our results demonstrated that dapagliflozin could reduce body weight gain and promote WAT browning in HFD induced obese mice via regulating lipogenesis and angiogenesis in WAT. Furthermore, dapagliflozin reduce cells differentiation, up-regulate the expression of WAT browning and angiogenesis genes in 3T3-L1 adipocytes in vitro. In conclusion, dapagliflozin can potentially promote WAT browning in HFD induced obese mice via improving lipogenesis and angiogenesis in WAT.


Subject(s)
Angiogenesis , Benzhydryl Compounds , Diabetes Mellitus, Type 2 , Glucosides , Male , Mice , Animals , Mice, Obese , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Mice, Inbred C57BL , Obesity/drug therapy , Obesity/metabolism , Adipose Tissue, White/metabolism , Diet, High-Fat/adverse effects
4.
PLoS One ; 19(3): e0299795, 2024.
Article in English | MEDLINE | ID: mdl-38502644

ABSTRACT

This article aims to investigate whether differences in ESG ratings have an impact on corporate green innovation behavior. A high-order fixed effects model was established using panel data from Chinese companies from 2009 to 2022 to empirically test the impact of ESG rating divergence in the Chinese market on corporate green innovation behavior.The study demonstrates that ESG rating disparity raises the quantity but lowers the quality of businesses' green innovation efforts because of the short board effect. After a series of robustness tests, the results are still valid.The mechanism investigation reveals that both an external pressure channel and an internal strategy adjustment channel are responsible for the impact of ESG rating disparity on green innovation efforts. The asymmetry of corporate green innovation activities is exacerbated by managers' self-interest, whereas the asymmetry of green innovation is mitigated by the caliber of government. According to the heterogeneity analysis, the divergence of a business's ESG rating between large-scale, non-heavy polluting, and places with strong environmental regulations can effectively slow down the asymmetric behavior of enterprise innovation activities. Additional investigation reveals that the phenomenon of ESG rating divergence spreads across industries and geographical areas. The short board effect of ESG rating divergence can be effectively mitigated by improving the quality of enterprise information disclosure and speeding up the digital transformation of businesses. The research conclusion provides marginal contributions on how to improve China's ESG rating system and how enterprises can identify ESG rating differences and make scientific decisions.

5.
Anal Chem ; 96(14): 5471-5477, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38551977

ABSTRACT

Current research endeavors have focused on the combination of various isothermal nucleic acid amplification methods with CRISPR/Cas systems, aiming to establish a more sensitive and reliable molecular diagnostic approach. Nevertheless, most assays adopt a two-step procedure, complicating manual operations and heightening the risk of contamination. Efforts to amalgamate both assays into a single-step procedure have faced challenges due to their inherent incompatibility. Furthermore, the presence of the protospacer adjacent motif (PAM) motif (e.g., TTN or TTTN) in the target double-strand DNA (dsDNA) is an essential prerequisite for the activation of the Cas12-based method. This requirement imposes constraints on crRNA selection. To overcome such limitations, we have developed a novel PAM-free one-step asymmetric recombinase polymerase amplification (RPA) coupled with a CRISPR/Cas12b assay (OAR-CRISPR). This method innovatively merges asymmetric RPA, generating single-stranded DNA (ssDNA) amenable to CRISPR RNA binding without the limitations of the PAM site. Importantly, the single-strand cleavage by PAM-free crRNA does not interfere with the RPA amplification process, significantly reducing the overall detection times. The OAR-CRISPR assay demonstrates sensitivity comparable to that of qPCR but achieves results in a quarter of the time required by the latter method. Additionally, our OAR-CRISPR assay allows the naked-eye detection of as few as 60 copies/µL DNA within 8 min. This innovation marks the first integration of an asymmetric RPA into one-step CRISPR-based assays. These advancements not only support the progression of one-step CRISPR/Cas12-based detection but also open new avenues for the development of detection methods capable of targeting a wide range of DNA targets.


Subject(s)
CRISPR-Cas Systems , Recombinases , CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems , Nucleotidyltransferases , DNA/genetics , DNA, Single-Stranded , DNA, Complementary , Nucleic Acid Amplification Techniques
6.
J Chromatogr Sci ; 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38446787

ABSTRACT

Qizhi Xiangfu Pills (QZXFPs) is one of the most commonly used traditional Chinese medicine preparations for the treatment of dysmenorrhea, but the existing quality evaluation standards have certain shortcomings and deficiencies. An effective and scientific quality evaluation method plays a vital role in medication safety. In this study, fingerprint combined with chemometric analysis and quantitative analysis of multi-components by a single marker (QAMS) method was used to comprehensively evaluate the quality of QZXFPs. The fingerprints of 28 batches samples were established and 23 common peaks were distinguished, of which 7 peaks were identified as albiflorin, paeoniflorin, baicalin, ligustilide, cyperotundone, nootkatone and α-cyperone. The content of these seven active ingredients was determined simultaneously by the QAMS method and there was no significantly different between QAMS and the external standard method. Additionally, similarity analysis, hierarchical cluster analysis, principal component analysis and orthogonal partial least squares discrimination analysis were applied for classifying the 28 batches of samples, and to find the main components causing the quality differences between different batches. In conclusion, the established method can comprehensively evaluate the consistency of quality between different batches and provide a reference for formulation quality evaluation to ensure safe and effective application of QZXFPs.

7.
Biotechnol J ; 19(2): e2300443, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38403432

ABSTRACT

With the increasing application of ZnO nanomaterials (ZnO-NMts) in the biomedical field, it is crucial to assess their potential risks to humans and the environment. Therefore, this study aimed to screen for ZnO-NMts with low toxicity and establish safe exposure limits, and investigate their mechanisms of action. The study synthesized 0D ZnO nanoparticles (ZnO NPs) and 3D ZnO nanoflowers (ZnO Nfs) with different morphologies using a hydrothermal approach for comparative research. The ZnO-NMts were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Mouse brain neuronal cells (NSC-34) were incubated with ZnO NMts for 6, 12, and 24 h, and the cell morphology was observed using TEM. The toxic effects of ZnO Nfs on NSC-34 cells were studied using CCK-8 cell viability detection, reactive oxygen species (ROS) measurement, caspase-3 activity detection, Annexin V-FITC/PI apoptosis assay, and mitochondrial membrane potential (Δφm) measurement. The results of the research showed that ZnO-NMts caused cytoplasmic vacuolization and nuclear pyknosis. After incubating cells with 12.5 µg mL-1 ZnO-NMts for 12 h, ZnO NRfs exhibited the least toxicity and ROS levels. Additionally, there was a significant increase in caspase-3 activity, depolarization of mitochondrial membrane potential (Δφm), and the highest rate of early apoptosis.This study successfully identified ZnO NRfs with the lowest toxicity and determined the safe exposure limit to be < 12.5 µg mL-1 (12 h). These findings will contribute to the clinical use of ZnO NRfs with low toxicity and provide a foundation for further research on their potential applications in brain disease treatment.


Subject(s)
Metal Nanoparticles , Nanoparticles , Zinc Oxide , Humans , Animals , Mice , Zinc Oxide/toxicity , Reactive Oxygen Species/metabolism , Oxides/pharmacology , Caspase 3/pharmacology , Apoptosis , Metal Nanoparticles/toxicity
8.
J Clin Pathol ; 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38346865

ABSTRACT

AIMS: Human epidermal growth factor receptor 2 (HER2)-positive patients with breast cancer may have different HER2/CEP17 ratios and HER2 copy numbers, with inconsistent responses to anti-HER2 neoadjuvant chemotherapy (NACT). Our study aimed to explore the relationship between different HER2 fluorescence in situ hybridisation (FISH) patterns in HER2-positive patients with breast cancer and responses to anti-HER2 NACT. METHODS: 527 patients with HER2-positive invasive breast cancer who received anti-HER2 NACT from 2015 to 2022 were included and divided into three groups by FISH results, namely group A: HER2/CEP17<2.0 and HER2 copy numbers ≥6.0, HER2 immunohistochemistry 2/3+; group B: HER2/CEP17≥2.0 and HER2 copy numbers ≥4.0 and <6.0; group C: HER2/CEP17≥2.0 and HER2 copy numbers ≥6.0. We compared clinicopathological characteristics and pathological complete response (pCR) rates of different groups. RESULTS: According to HER2 FISH results, 12 patients (2.3%, 12/527) were in group A, 40 (7.6%, 40/527) were in group B and 475 (90.1%, 475/527) were in group C. The pCR rate was the lowest in group B (5.0%), while the pCR rates in group A and group C were 33.3% and 44.4%, respectively (p (group A vs. B) =0.021, p (group C vs. B) < 0.001). Both univariate and multivariate analyses revealed that HER2 FISH pattern was correlated with pCR rate (p (group C vs. B) < 0.001, p (group C vs. B) = 0.025). CONCLUSIONS: Patients with HER2/CEP17≥2.0 and HER2 copy numbers ≥4.0 and <6.0 do not benefit to the same extent from current anti-HER2 therapies as FISH-positive patients with other patterns.

9.
Int J Biol Macromol ; 261(Pt 1): 129678, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38280704

ABSTRACT

Glycosyltransferase is a popular and promising enzyme to produce high-value-added natural products. Rare ginsenoside Rh1 and unnatural ginsenoside 3ß-O-Glc-PPT are promising candidates for drugs. Herein, the microbial glycosyltransferase UGTBL1 was able to catalyze the 20(S)-protopanaxatriol (PPT) 3-O/6-O-glycosylation with poor 6-O-regiospecificity. A structure-guided strategy of mutations involving loop engineering, PSPG motif evolution, and access tunnel engineering was proposed to engineer the enzyme UGTBL1. The variant I62R/M320H/P321Y/N170A from protein engineering achieved a great improvement in 6-O regioselectivity which increased from 10.98 % (WT) to 96.26 % and a booming conversion of 95.57 % for ginsenoside Rh1. A single mutant M320W showed an improved 3-O regioselectivity of 84.83 % and an increased conversion of 98.13 % for the 3ß-O-glc-PPT product. Molecular docking and molecular dynamics (MD) simulations were performed to elucidate the possible molecular basis of the regiospecificity and catalytic activity. The unprecedented high titer of ginsenoside Rh1 (20.48 g/L) and 3ß-O-Glc-PPT (18.04 g/L) was attained with high regioselectivity and yields using fed-batch cascade reactions from UDPG recycle, which was the highest yield reported to date. This work could provide an efficient and cost-effective approach to the valuable ginsenosides.


Subject(s)
Ginsenosides , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Molecular Docking Simulation , Glycosylation
10.
Mol Microbiol ; 121(4): 781-797, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38242855

ABSTRACT

Invasive candidiasis caused by non-albicans species has been on the rise, with Candida glabrata emerging as the second most common etiological agent. Candida glabrata possesses an intrinsically lower susceptibility to azoles and an alarming propensity to rapidly develop high-level azole resistance during treatment. In this study, we have developed an efficient piggyBac (PB) transposon-mediated mutagenesis system in C. glabrata to conduct genome-wide genetic screens and applied it to profile genes that contribute to azole resistance. When challenged with the antifungal drug fluconazole, PB insertion into 270 genes led to significant resistance. A large subset of these genes has a role in the mitochondria, including almost all genes encoding the subunits of the F1F0 ATPase complex. We show that deleting ATP3 or ATP22 results in increased azole resistance but does not affect susceptibility to polyenes and echinocandins. The increased azole resistance is due to increased expression of PDR1 that encodes a transcription factor known to promote drug efflux pump expression. Deleting PDR1 in the atp3Δ or atp22Δ mutant resulted in hypersensitivity to fluconazole. Our results shed light on the mechanisms contributing to azole resistance in C. glabrata. This PB transposon-mediated mutagenesis system can significantly facilitate future genome-wide genetic screens.


Subject(s)
Candida glabrata , Fluconazole , Fluconazole/metabolism , Candida glabrata/genetics , Drug Resistance, Fungal/genetics , Antifungal Agents/pharmacology , Azoles , Proton-Translocating ATPases/metabolism , Microbial Sensitivity Tests
11.
Cell Rep ; 43(2): 113686, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38219149

ABSTRACT

Insects have an effective innate immune system to protect themselves against fungal invasion. Metarhizium employs a toxin-based strategy using a nonribosomal peptide called destruxin A (DA) to counteract the host immune response. However, the mechanism by which DA inhibits insect immunity is still unclear. Here, we identified 48 DA-binding proteins in silkworm hemolymph, with the binding affinity (KD) ranging from 2 to 420 µM. Among these proteins, hemocytin, an important immune factor, was determined to be the strongest DA-binding protein. DA binds to hemocytin and regulates its conformation in a multisite manner. Furthermore, DA exerts a significant inhibitory effect on hemocytin-mediated hemocyte aggregation. By disrupting the interaction between hemocytin, actin A3, and gelsolin, DA prevents the transformation of granules into vesicles in hemocytes. These vesicles are responsible for storing, maturing, and exocytosing hemocytin. Therefore, hemocytin secretion is reduced, and the formation of structures that promote aggregation in outer hemocytes is inhibited.


Subject(s)
Depsipeptides , Hemolymph , Metarhizium , Animals , Actins , Insecta
12.
Nutrients ; 16(2)2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38257085

ABSTRACT

This study aimed to describe the prevalence of comorbid hypertension and hyperuricemia (HH) and detected the dietary factors for HH in Chinese adults aged 18 to 64 years. All of the data were collected from the China Nutrition and Health Surveillance 2015-2017, with a stratified, multistage, random sampling method on a national scale. A total of 52,627 adult participants aged 18~64 years from the CNHS 2015-2017 were included in this study. HH was identified as SUA level cut-offs for males and females of 420 µmol/L and 360 µmol/L, respectively, with mean systolic blood pressure ≥140 mmHg and/or mean diastolic blood pressure ≥ 90 mmHg and/or received antihypertensive treatment within two weeks. The differences in HH prevalence between or among the subgroups were compared by the Rao-Scott chi-square test. The correlations between HH and covariates or metabolic factors were detected by a weighted two-level multivariate survey logistic regression. The total weighted sufficient intake ratios of beans and nuts, vegetables, and red meat were 59.1%, 46.6%, and 64.8%, respectively. The weighted prevalence of HH in the total participants was 4.7% (95% CI: 4.3-5.0%). The positive effects of bean and nut on HH were observed. The participants who had sufficient bean and nut intake showed lower risk for HH (for the total participants: OR = 0.734, 95% CI = 0.611-0.881). The prevalence of HH might have been a public health problem, and bean and nut intake might be a protective factor for HH in the Chinese population.


Subject(s)
Hypertension , Hyperuricemia , Adult , Female , Humans , Male , China/epidemiology , Hypertension/epidemiology , Hypertension/prevention & control , Hyperuricemia/epidemiology , Hyperuricemia/prevention & control , Nuts , Protective Factors , Adolescent , Young Adult , Middle Aged
13.
Geroscience ; 46(2): 2051-2062, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37814197

ABSTRACT

Previous studies have found that the association between modifiable risk factors and arterial stiffness varied with age. We aimed to explore the age-specific difference in the relationship between new cardiovascular health (CVH) score and arterial stiffness and further detected the age-specific temporal relationships in a prospective cohort study. During a median 4.3 years follow-up, 3757 participants were recruited in this study. A modified AHA "Life's Essential 8" construct (mLE8 with lacking information on diet habits) was used to evaluate CVH. Branchial-ankle pulse wave velocity (baPWV) was measured to assess arterial stiffness. Data were analyzed with logistic regression models, restricted cubic splines (RCS), and cross-lagged path analysis (age < 60 vs. age ≥ 60). In age-stratified analysis, moderate (OR = 2.21, 95% CI 1.11-4.43) and low (OR = 3.37, 95% CI 1.63-7.00) CVH were related with a higher incidence of elevated baPWV compared to high CVH in middle-aged adults, while this association was not detected in older adults. RCS curve showed a steeper linear association between CVH score and elevated baPWV in middle-aged adults than older individuals. In the cross-lagged path analysis, the decline in CVH score preceded the increment in arterial stiffness in middle-aged adults, but they appeared to alter simultaneously in older adults. Our study detected an age-specific difference in the relationship between mLE8 CVH score and elevated baPWV and showed that low CVH preceded alterations of baPWV in middle-aged adults, suggesting the importance of improvement in CVH during the early stage of the lifespan.


Subject(s)
Vascular Stiffness , Humans , Middle Aged , Aged , Pulse Wave Analysis , Prospective Studies , Risk Factors , Age Factors
14.
Int J Mol Sci ; 24(23)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38069352

ABSTRACT

Both parasitoids and entomopathogenic fungi are becoming increasingly crucial for managing pest populations. Therefore, it is essential to carefully consider the potential impact of entomopathogenic fungi on parasitoids due to their widespread pathogenicity and the possible overlap between these biological control tools during field applications. However, despite their importance, little research has been conducted on the pathogenicity of entomopathogenic fungi on parasitoids. In our study, we aimed to address this knowledge gap by investigating the interaction between the well-known entomopathogenic fungus Beauveria bassiana, and the pupal endoparasitoid Pteromalus puparum. Our results demonstrated that the presence of B. bassiana significantly affected the survival rates of P. puparum under laboratory conditions. The pathogenicity of B. bassiana on P. puparum was dose- and time-dependent, as determined via through surface spraying or oral ingestion. RNA-Seq analysis revealed that the immune system plays a primary and crucial role in defending against B. bassiana. Notably, several upregulated differentially expressed genes (DEGs) involved in the Toll and IMD pathways, which are key components of the insect immune system, and antimicrobial peptides were rapidly induced during both the early and late stages of infection. In contrast, a majority of genes involved in the activation of prophenoloxidase and antioxidant mechanisms were downregulated. Additionally, we identified downregulated DEGs related to cuticle formation, olfactory mechanisms, and detoxification processes. In summary, our study provides valuable insights into the interactions between P. puparum and B. bassiana, shedding light on the changes in gene expression during fungal infection. These findings have significant implications for the development of more effective and sustainable strategies for pest management in agriculture.


Subject(s)
Beauveria , Mycoses , Parasites , Animals , Parasites/genetics , Gene Expression
15.
Front Med ; 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38049616

ABSTRACT

Studies have found a U-shaped relationship between sleep duration and chronic kidney disease (CKD) risk, but limited research evaluated the association of reallocating excessive sleep to other behavior with CKD. We included 104 538 participants from the nationwide cohort of the Risk Evaluation of Cancers in Chinese Diabetic Individuals: A Longitudinal Study, with self-reported time of daily-life behavior. Using isotemporal substitution models, we found that substituting 1 h of sleeping with sitting, walking, or moderate-to-vigorous physical activity was associated with a lower CKD prevalence. Leisure-time physical activity displacement was associated with a greater prevalence reduction than occupational physical activity in working population. In stratified analysis, a lower CKD prevalence related to substitution toward physical activity was found in long sleepers. More pronounced correlations were observed in long sleepers with diabetes than in those with prediabetes, and they benefited from other behavior substitutions toward a more active way. The U-shaped association between sleep duration and CKD prevalence implied the potential effects of insufficient and excessive sleep on the kidneys, in which the pernicious link with oversleep could be reversed by time reallocation to physical activity. The divergence in the predicted effect on CKD following time reallocation to behavior of different domains and intensities and in subpopulations with diverse metabolic statuses underlined the importance of optimizing sleeping patterns and adjusting integral behavioral composition.

16.
Ecotoxicol Environ Saf ; 267: 115648, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37922779

ABSTRACT

Bt (Bacillus thuringiensis) maize is expected to be commercial cultivated widely in China. When Bt maize is planted near mulberry trees, it renders silkworms (Bombyx mori) vulnerable, as they belong to the same class as the Lepidoptera insects targeted by Bt maize. Cry1F has been found to be highly toxic to silkworms, particularly in their early larval stages. In this study, we aimed to assess the effects of non-lethal Cry1F exposure on the growth, immune response, and intestinal microbiota in silkworms. The results showed that feeding silkworms with mulberry leaves soaked in 100 µg/mL Cry1F for 96 h had an impact on larval body weight acquisition, leading to a decrease in cocoon and pupae weight. Cry1F exposure disrupted the intestinal integrity of silkworms by affecting the columnar cells of the midgut. The activity of detoxification enzymes (CarE, AChE, and GST) as well as antioxidant enzymes (SOD, CAT, and POD) were also affected by Cry1F. After 96 h Cry1F exposure, the evenness of the bacterial community was disrupted, resulting in alterations in the structure of the intestinal microbiota. Additionally, Cry1F exposure affected the relative expression levels of the peritrophic membrane (PM) protein and the corresponding immune pathways genes of silkworms. Most of the immune-related gene expressions were inhibited after exposure to Cry1F toxin but increased with prolonged treatment. This study demonstrates that non-lethal Cry1F exposure can affect the growth, immune response, and intestinal microbiota of silkworm.


Subject(s)
Bombyx , Gastrointestinal Microbiome , Lepidoptera , Morus , Animals , Bombyx/genetics , Antioxidants , Larva , Membrane Proteins , Immunity
17.
Plants (Basel) ; 12(22)2023 Nov 19.
Article in English | MEDLINE | ID: mdl-38005797

ABSTRACT

Highly nutritious traditional plants which are rich in bioactive substances are attracting increasing attention. In this study, the nutritional value, chemical composition, biological activities, and feed indices of different parts of Millettia speciosa were comprehensively evaluated. In terms of its nutritional value, this study demonstrated that the leaves, flowers and seeds of M. speciosa were rich in elements and amino acids; the biological values (BVs) of these ingredients ranged from 85% to 100%, showing the extremely high nutritional value of this plant. GC-MS analysis suggested that the main chemical components of the flower volatile oil were n-hexadecanoic acid (21.73%), tetracosane (19.96%), and pentacosane (5.86%). The antibacterial activities of the flower and seed extracts were significantly stronger than those of the leaves and branches. The leaf extract displayed the strongest antifungal activities (EC50 values: 18.28 ± 0.54 µg/mL for Pseudocryphonectria elaeocarpicola and 568.21 ± 33.60 µg/mL for Colletotrichum gloeosporioides) and were the least toxic to mouse fibroblasts (L929) (IC50 value: 0.71 ± 0.04 mg/mL), while flowers were the most toxic (IC50 value: 0.27 ± 0.03 mg/mL). In addition, the abundance of fiber, protein, mineral elements, and functional metabolite contents indicated the potential applicability of M. speciosa as an animal feed. In conclusion, as a traditional herbal plant used for medicinal and food purposes, M. speciosa shows potential for safe and multifunctional development.

18.
mBio ; : e0268823, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38014938

ABSTRACT

IMPORTANCE: Candida auris is a recently emerged pathogenic fungus of grave concern globally due to its resistance to conventional antifungals. This study takes a whole-genome approach to explore how C. auris overcomes growth inhibition imposed by the common antifungal drug fluconazole. We focused on gene disruptions caused by a "jumping genetic element" called transposon, leading to fluconazole resistance. We identified mutations in two genes, each encoding a component of the Ubr2/Mub1 ubiquitin-ligase complex, which marks the transcription regulator Rpn4 for degradation. When either protein is absent, stable Rpn4 accumulates in the cell. We found that Rpn4 activates the expression of itself as well as the main drug efflux pump gene CDR1 by binding to a PACE element in the promoter. Furthermore, we identified an amino acid change in Ubr2 in many resistant clinical isolates, contributing to Rpn4 stabilization and increased fluconazole resistance.

19.
Expert Opin Drug Saf ; : 1-12, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38009292

ABSTRACT

BACKGROUND: This study aimed to adopt the conventional signal detection methods to explore a new way of risk identification and to mine important drug risks from the perspective of big data based on Zhenjiang Adverse Event Reporting System (ZAERS). RESEARCH DESIGN AND METHODS: Data were extracted from ZAERS database between 2012 and 2022. The risks of all the reported drug event combinations were identified at the preferred term level and the standardized MedDRA query level using disproportionality analysis. Then, we conducted signal assessment according to the descriptions of drug labels. RESULTS: In total 41,473 ADE were reported and there were 12 risky signals. Signal assessment indicates the suspected causal associations in clindamycin-taste and smell disorders, valsartan-hepatic enzyme increased and valsartan-edema peripheral; the specific manifestations of allergic reactions triggered by clindamycin, cefotaxime, cefazodime, ShexiangZhuanggu plaster, ShexiangZhuifeng plaster, and Yanhuning need to be refined in drug labels. In addition, the drug labels of NiuHuangShangQing tablet/capsule, Fuyanxiao capsule, and BiYanLing tablet should be improved. CONCLUSIONS: In this study, we attempted a new way to find potential drug risks using small spontaneous reporting data. Our findings also suggested the need for more precise identification of allergic risks and the improvement of traditional Chinese medicine labels.

20.
Cell Rep ; 42(12): 113473, 2023 12 26.
Article in English | MEDLINE | ID: mdl-37980562

ABSTRACT

In the human fungal pathogen Candida albicans, invasive hyphal growth is a well-recognized virulence trait. We employed transposon-mediated genome-wide mutagenesis, revealing that inactivating CTM1 blocks hyphal growth. CTM1 encodes a lysine (K) methyltransferase, which trimethylates cytochrome c (Cyc1) at K79. Mutants lacking CTM1 or expressing cyc1K79A grow as yeast under hyphae-inducing conditions, indicating that unmethylated Cyc1 suppresses hyphal growth. Transcriptomic analyses detected increased levels of the hyphal repressor NRG1 and decreased levels of hyphae-specific genes in ctm1Δ/Δ and cyc1K79A mutants, suggesting cyclic AMP (cAMP)-protein kinase A (PKA) signaling suppression. Co-immunoprecipitation and in vitro kinase assays demonstrated that unmethylated Cyc1 inhibits PKA kinase activity. Surprisingly, hyphae-defective ctm1Δ/Δ and cyc1K79A mutants remain virulent in mice due to accelerated proliferation. Our results unveil a critical role for cytochrome c in maintaining the virulence of C. albicans by orchestrating proliferation, growth mode, and metabolism. Importantly, this study identifies a biological function for lysine methylation on cytochrome c.


Subject(s)
Candida albicans , Fungal Proteins , Animals , Mice , Humans , Candida albicans/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Cyclic AMP/metabolism , Cytochromes c/metabolism , Hyphae , Lysine/metabolism , Morphogenesis , Gene Expression Regulation, Fungal
SELECTION OF CITATIONS
SEARCH DETAIL
...